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raindi. 4 examined a simple cantilevered bone to determine whether regional differ-
nbryol, | ences in particular strain-related features are reflected in the microstruc-
. Boyde | tural organization of compact bone.
stion | Methods & Results: The artiodactyl (e.g., sheep and deer) calcaneus has a
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dom, In: ¢ tudes across each of these cortices. Microscopic examination showed os-
20, LC. | teon density and cortical porosity differences between tension (caudal) and
wtion of | compression (cranial) cortices, averaging 11.4% more osteons in the com-
lius and pression cortex (P < 0.01) and 80.2% greater porosity in the tension cortex
s byame? (P < 0.01). There is 43.5% more interstitial bone in the compression cortex
" j (P < 0.01), Osteons in the compression cortex also have smaller areas in
dodactyl  § contrast o the larger area per osteon in the tension cortex, Although ne
: Effects ‘ definite transcortical gradient in osteonal density or cortical porosity is
§ found, fractional area of interstitial bone is largest and osteon population
. dBT;::' density is lowest in the endocortical regions of both tension and compres-
' sion cortices. The endocortical regions also have greater porosity than
%fdiﬁi';' their corresponding middle and pericortical regions (P < 0.01).
’ Q Conclusions: These osteonal microstrueture and cortieal porosity differ-
od Prac. ences may be adaptations related to regional differences in strain mode
der,ods. |} and/or strain magnitude. This may be related to the disparity in mechanical
sht, den- ¢ properties of compact bone in tension vs. compression. These differences
an early may reflect a capacity of bone to process local and regional strain-related
ament of information. © 1994 Wiley-Liss, Inc.*
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The adaptation of cortical bone to its mechanical en-
vironment ineludes alteration in both its internal
structure (remodeling) and its external shape (model-
ing) (Currey, 1984b; Frost, 1990a,b; Martin, 1991; Mar-

tin and Burr, 1989). Mechanical strain, or deformation,

also plays an important role in adaptive responses that
occur in bone when loading conditions are perturbed
{Brown et al., 1990; Lanyon, 1987, 1991, 1992a,b; Mar-
tin and Burr, 1989). Mechanical strain is also thought
to be an important factor in defining the thresholds for
bone remodeling activity in normal bone. Martin and
Burr (1989) describe bone strain as a complex interac-
tion of several features including strain magnitude and
strain mode (tension, compression, or shear). Recent
evidence suggests that the structural/maternal objec-
tive of normal bone development is strongly influenced

© 1994 WILEY-LISS, INC. *This article is a US Government work and,
as guch, is in the public domain in the United States of America. '

by a bone’s complete strain history, with other extrin-
sic factors having lesser importance {Burger et al,
1991; Carter, 1987; Carter et al., 1987; Frost, 1985,
1991; Hall and Herring, 1990; Lanyon, 1984, 1992a,b;
Wong et al., 1992).

In vivo studies have shown that strain modes, strain
magnitudes, and other aspects of strain histories differ
between regions of the same bone (Biewener and Ber-
tram, 1991; Biewener et al., 1986; Gross et al., 1991;
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Lanyon et al.,, 1979). Bones habitually subjected to
bending stresses show regional differences in struc-
tural/material organization that appear to be related to
either tension or compression loading (Albright, 1987;
Boyde and Riggs, 1990; Carando et al., 1989, 1991,
Carter et al, 1981; Cowin, 1984; Currey, 1984a;
Lanyon, 1980; Lanyon and Baggott, 1976; Portigliatti-
Barbos et al., 1983; Riggs et al., 1993a, b; Skedros and
Bloebaum, 1991). The idea that bone can adjust its
structural/material organization to regional heteroge-
neities in strain milieus has been used to explain the
regional differences that occur in the fraction of pri-
mary bone that has been remodeled with secondary
osteons, bone remodeling rates, and growth rates be-
tween different regions in limb bones (Amprino and
Marotti, 1964; Anderson and Danylchuk, 1978; Bou-
vier, 1985; Burr, 1992; Enlow, 1966; Harris et al.,
1968). ‘

Variations in the population density (number/area),
size and shape, and collagen fiber orientation of os-
teons, strongly influence the mechanical properties of
bone (Ascenzi, 1988; Frost, 1986; Martin and Burr,
1989; Moyle et al., 1978; Pidaparti and Burr, 1992;
Simkin and Robin, 1974), If regional differences in cel-
lular activities (osteoclastic and/or osteoblastic) exist
due to regional disparities in strain mode (tension vs.
compression) or strain magnitude, they could be man-
ifested as differences in microstructural organization.
We hypothesize that in compact bone habitually loaded
in bending, osteon microstructure will differ between
the tension and compression cortices. We test this hy-
pothesis by examining varicus static osteonal parame-
ters in a natural “tension/compression skeletal sys-
tem-”

MATERIALS AND METHODS

The artiodactyl (e.g., sheep, deer, and goats) calea-
neus waa the model selected for study since it has been
documented by Lanyon (1973, 1974) to be a simply
loaded natural {in vivo) tension/compression system,
receiving simple bending confined to the sagittal plane.
Ten large skeletally mature male Rocky Mountain
Mule Deer calcanei (Odocoileus hemionus hemionus)
were each oriented and sectioned transversely at 50
and 70% of length, with the 70% section being closest to
the joint (Skedros and Bloebaum, 1991; Skedros et al.,
1994) (Fig. 1 in companion paper). The sections were
embedded in polymethyl methacrylate using conven-
tional methods (Emmanual et al., 1987). The distal sur-
face of each embedded section was ground, polished,
and prepared for imaging in the backscattered electron
(BSE) mode of a JEOL scanning electron microscope
(SEM). The methods of Bloebaum and Skedros and co-
workers (Bloechaum et al., 1990; Skedros et al., 1993a,b)
were used for BSE imaging; however, no attempt has
been made to calibrate graylevels between imaging
sessions. Images were developed on Polaroid 52 film.

In all sections the compression cortex was defined as
being cranial to the medullary canal, and the tension
cortex was defined as being caudal to the medullary
canal. At the macroscopic level the boundary between
cancellous and - cortical bone was easily delineated;
however, under the microscope at 50 X magnification,

a thin, porous transition zone between cortical and can-.

cellous tissue types was seen. This zone consisted of
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progressively enlarging porous spaces which grade into
the porosity of the trabecular bone. Regions wherein
the width of the bone between the porous spaces was
less than the diameter of the porous spaces were con-
sidered to be characteristic of the porous transition
zone, and thus were avoided in analysis. This insured
that only cortical bone was analyzed.

Compression and tension cortices were each divided
into three 1.6 by 2.3 mm regions: pericortical, middle,
and endocortical. The middle region was located mid-
way between the pericortical and the endocortical re-
gions. The pericortical region was located immediately
beneath the circumferential lamellae of the periosteal
surface, without overlapping the middle region. The
endocortical region was located near the endosteal
margin of the cortex, without overlapping the middle
region.

In each region one 50x image representing the en-
tire 1.6 X 2.3 mm area was captured in the SEM/BSE
mode and saved for analysis. Additionally, within each
region two 0.8 X 1.1 mm areas were imaged at 100 x
magnification; one 100 x image was located in the up-
per right quadrant and the other was located in the
lower left quadrant of the 1.6 X 2.3 mm region. In the
few cases where the entire 50 X region was not entirely
comprised of cortical bone, the 100X images were
taken as close as possible to these quadrants without
including areas with large porous spaces. Without ex-
ception, 100 X images did not overlap, did not fall out-
side the perimeter of the region defined by the 50 x
image, and did not contain cancellous bone or porous
bone in the transitional zone.

Since the mechanical properties of primary bone dif-
fer from those of remodeled bone {Currey, 1984b), it
was important to distinguish the primary osteons of
primary bone from secondary osteons of remodeled
bone. Secondary osteons are formed through a resorp-
tion and replacement process (Carter and Hayes, 1976;
Smith, 1960) and thus their outer margin will intersect
lamellae of surrounding bone. Since intersecting
lamellae are not seen in primary bone, secondary bone
can be readily distinguished from primary bone in most
instances (Currey, 1959; Enlow, 1963, 1966; Saha and
Hayes, 1977; Smith, 1960). Since the bone was highly
remodeled, the small amount of bone that confidently
could be considered primary (<5% of all hone cumula-
tive areas sampled) was not considered separately, but
was included as part of the interstitium.

In the 100 x images the following were counted: sec-
ondary osteons with only one central canal and second-
ary osteon fragments with only one central canal. Al-
though most osteons typically have only one central
canal, in some cases there are two or more. This can be
a result of branching of individual osteons (Cohen an
Harris, 1958). In instances where two adjacent canals
appeared to be nearly fused, having a constriction be-
tween them (for example, a dumbbell shape with a ¢a-
nal in each end), the structure was counted as two 08-
teons. This occurred infrequently (< 0.5% of total
osteons counted). However, if the boundaries circur-
scribing two closely associated central capals did not
have a constriction between the canals, they wer®
counted as one osteon (-< 0.5% of total osteons counted):
An osteon was counted if: (1) more than 80% of its ared
was distinguishable from contiguous osteons; (2) the
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STRAIN-SPECIFIC DIFFERENCES IN BONE

pborders of the osteon were distinguishable; (3) all or
part of its central canal was present within the bound-
aries of an image (Barth et al., 1992; Corondan and
Haworth, 1986). Because all of the above criteria for
osteon selection require some observer judgment, all
counting and osteonal differentiation were done by one
trained investigator (M.W.M.), and were reviewed by a
second trained investigator (J.G.8.).

The fractional area of secondary bone {(defined as the
percent of cumulative cross-sectional bone areas occu-
pied by secondary osteons), interstitial bone, and po-
rous spaces (central canals and resorption spaces) were
determined using a point counting technique (Parfitt,
1983; Russ, 1986). Eight millimeter grids used for point
counting were prepared on transparent film and were
randomly superimposed over each 50 x BSE/SEM pho-
tomicrograph. There were between 117 and 123 points
for each 50 X image. Each point of the gird was classi-
fied as either secondary bone or interstitial bone. The
area of secondary bone included the area occupied by
their central canals. By definition, interstitial bone
area did not include any central canals. The area occu-
pied by porous (unmineralized tissue) spaces, invari-
ably seen as central canals and resorption spaces, was
calculated separately using a 4.5 mm grid superim-
posed over the 100 x images, and only the points over-
lying central canals or resorption spaces were counted.
There were an average of 452 = 4 points in each 100 x
image. The fractional area of the secondary bone was
defined as follows: total area of secondary bone (S) di-
vided by total area of secondary bone plus interstitial
bone (I), [S/(S+I}]. Correction for porosity was made by
subtracting the porosity of central canals from the frac-
tional area of secondary bone. Thus the influence of
potentially larger canals in the tension cortex could be
eliminated. Statistical analyses were conducted on the
fractional area of secondary bone corrected for porosity.
No correction was made for the unmineralized spaces
represented by lacunae or canaliculi. Cracks, as seen in
Figure 1, are unavoidable artifacts of fixation. The
cracks were found to contribute less than 2% the total
area of the image. The grid size used for fractional area
of secondary bone measurements was too large to sam-
ple cracks (Russ, 1986). During porosity measure-
ments, care was taken to exclude cracks from the data.

Osteon size, which is a feature that can be indepen-
dent of the degree of remodeling, may be mechanically
important. Area per osteon was estimated for each re-
gion by dividing the total area of secondary bone, in-
cluding the central canals, by the number of osteons in
the respective region. The mean area per osteon illus-
trates the regional differences in osteon size that are
demonstrated by the observed data. Because these val-
ues were calculated, standard deviations could not be
provided.

In summary the following data was obtained: (1)
Number of osteons per bone area, (2) fractional area of
secondary osteonal bone including central canals and
resorption spaces, (3} fractional area of secondary os-
teonal bone excluding porous spaces, (4} combined area
of primary and secondary interstitial bone, and (5) po-
rosity including area of central canals and other porous
spaces (i.e., all non-mineralized tissue and “void”
8paces). For comparisons and statistical analyses, data
was analyzed in several groupings. Comparison be-
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tween tension and compression cortices were examined
using a paired T-test. Comparisons between regions
within each cortex were examined using an analysis of
variance (ANOVA) design. An alpha level of < 0.01
was considered statistically significant.

RESULTS

Osteon Cross-Sectional Shape and Relative
Mineralization Differences

Figure 1 shows representative BSE images from all
regions of the compression and tension cortices in the
50% section of one animal!. The relatively smaller,
more uniformly circular-shaped osteons of the compres-
sion cortex contrast with the larger, more irregular-
shaped osteons in the tension cortex. The graylevel dif-
ferences within each image indicate relatively lower
mineral content and younger tissue age, hence higher
remodeling of bone in the tension cortex (Skedros et al.,
1993a,b).

Osteon Population Density

Analysis of combined data from all regions of the 50
and 70% sections shows significantly more osteons
in the compression cortex than in the tension cortex
(P < 0.01) Fig. 2, Table 1). Transcortically, in the com-
pression cortices of the 50 and 70% sections, the num-
ber of osteons does not differ significantly between the
pericortical and middle regions (P = 0.18), but there
are significantly fewer osteons in the endocortical re-
gion (P < 0.01). Similarly, in the tension cortices of the
50 and 70% sections, the number of osteons does not
differ significantly between the pericortical and middle
regions (P = 0.14), but there are significantly fewer
osteons in the endocortical region (P <0.01).

Osteonal population density data from the 50 and
70% sections were combined and compared between re-
gions of the compresgsion and tension cortices (Table 1).
There were significantly more osteons in the Eericorti-
cal region of the compression cortex (48.7/mm®) than in
the pericortical region of the tension cortex (40.1/mm?)
(P < 0.01). A similar difference is found between the
middle region of the compression cortex (45.0/mm?)
and the middle region of the tension cortex (36.9%/mm?)
(P < 0.01). However, in the endocortical regions of both
compression (20.6/mm?) and tensions (25.7/mm?) corti-
ces osteon density is not significantly different (P =
0.05).

Fractional Area of Secohdary Bone

The fractional area of secondary bone was combined
for all regions of the 50 and 70% compression and ten-
sion cortices (Table 1). The fractional area of secondary

bone is significantly lower in the compression cortices

(64.8%) than in the tension cortices (75.5%) (P < 0.01).
In the compression cortex, the fractional area of sec-
ondary bone is equivalent in the pericortical and mid-
dle regions (P = 0.38), but is significantly lower in the
endocortical region (P <2 0.01). Hence, the endocortical
regions of the compression cortices contain a signifi-
cantly larger fractional area of interstitial bone than
found in either the pericortical or middle regions. Sim-
ilarly, in the tension cortex there is no difference in
fractional area of secondary bone between the pericor-
tical and middle regions (P = 0.27), but the endocorti-
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Fig. 1. Backscattered electron images showing representative fields of all regions analyzed from a 50%
section of one ealcaneus (each image 50x): (A) compression pericortical, (B} tension pericortical, (C)
compression middle, (D) tension middle, (E) compression endocortical, and (F) tension endocortical. The
cracks, which are unavoidable artifacts of fixation, were excluded from analysis.
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bone area/50 % image; Bottom: percent porosity/50 % image. A 50 x
image is 3.6 mum?. Bars represent means, lines represent one standard
deviation. P = pericortical region, M = middle region, E = endocor-
tical region.

cal region has significantly less secondary bone than
either the pericortical or middle region (P < 0.01). In
other words, the endocortical region of both tension and
compresgion cortices has more interstitial bone com-
pared to the other regions.

Analysis of combined data from the 50 and 70% sec-
tions shows that the compression pericortical region
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has a significantly smaller fraction of secondary bone
(excluding pores) (71.0%) compared to the fraction of
secondary bone in the tension pericortical region
(80.7%) (P < 0.01). A similar difference is found be-
tween the middle region of the compression cortex
(69.0%) and the middle region of the tensicn cortex
(78.5%) (P < 0.01). A somewhat larger difference is
found between the endocortical region of the compres-
sion cortex (54.5%) and endocortical region of the ten-
sion cortex (67.2%) (P < 0.01).

Porosity

Nearly all (> 99%) of the porous spaces are osteon
central canals; resorption spaces are infrequently seen.
Analysis of combined data for all regions in the 50 and
70% sections show that the compression cortex is sig-
nificantly less porous (4.7% porosity) than the tension
cortex (8.5% porosity) (P < 0.01) (Table 1). There are no
significant differences (P = 0.29) in porosity in peri-
cortical and middle regions of the compression cortices.
In the compression cortex, endocortical regions are not
significantly more porous than pericertical and middle
regions (P = 0.33).

Analysis of combined porosity data from the 50 and
70% tension cortices demonstrates no significant dif-
ferences between the middle and pericortical regions
(P = 0.4), but the endocortical regions are significantly
more porous than these other two regions (P < 0.01).
There are no significant differences in the porosity of
the pericortical regions of the compression (4.9%) and
tension (5.7%) cortices (P = (.26). However, the po-
rosity of the middle region of the tension cortex
(6.4% porosity) is significanily greater than the mid-
dle region of the compression cortex (4.2% porosity)
(P = 0.01). The porosity of the endocortical region of
the tension cortex (13.2% porosity) is also significantly
greater than the porosity of the endocortical region
(4.9% porosity) of the compression cortex (P < 0.01).

Area Per Osteon

Calculations show that osteons in the compression
cortex are smaller (0.022 mm®*/osteon) than osteons in
the tension cortex (0.026 mmZ*bosteon). If cross-sec-
tional shape is assumed to be circular, compression os-
teons would have a diameter of 165 pm compared to
tension osteons which would have a diameter of 185
po.

DISCUSSION

It has been suggested that a bone adapts its strue-
tural/material organization to achieve a uniform elas-
tic modulus and/or safety factor to failure between dis-
crete cortical regions throughout its entire volume
(Cowin et al., 1985; Hart, 1988; Huiskes et al., 1987;
Riggs et al., 1993ab). Regional differences in cortical
microstructure and ultrastructure have been observed,
but often not quantified, in various bone types that are
subject to the habitual presence of physiologic bending
stresses (Amprino, 1943; Bacon and Griffiths, 1985;
Biewener and Bertram, 1991; Biewener et al., 1986;
Boyde and Riggs, 1990; Carando et al., 1989, 1991;
Gross et al., 1991; Lanyon, 1974, 1984; Lanyon and
Baggott, 1976; Lanyon et al., 1979; Lozupone, 1985;
Minns et al., 1975; Portigliatti-Barbos et al., 1983; Reid
and Boyde, 1987; Riggs et al., 1990, 1993a,b; Shah et
al., 1990; Smith, 1960; Turner et al., 1975; Vincentelli,

_
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TABLE 1. Cumulated data: 50 and 70% sections'

Qsteon density

Fractional area

Locations (no. of osteons/mm?) of 2nd bone (%) Porosity (%)
Compression cortex (all regions) 38.1(15.1) 64.8 (10.6) 4.7(2.00
Tension cortex (all regions) 34.2 (9.6) 75.5 (8.8) 8.5(5.9
Compression pericortical region 48.7(7.2) 71.0(5.8) 4.9(2.1)
Compression middle region 45.0(10.4) 69.0 (3.2 4.2(1.9)
Compression endocortical region 20.6(7.5) 54.5(11.7) 4.9 (2.0)
Tension pericortical region 40.1 (6.5) 80.7 (4.9) 5.7(2.1)
Tension middle region 36.9 (8.4) 78.5(6.3) 6.4 (3.0
Tension endocortical region 257 (7.4) 67.2 (8.0) 13.2(7.6)

'Figures indicate the means and (standard deviations).

1978). We hypothesized that strain-mode-specific me-
chanical adaptations, if present, would be seen as dif-
ferences in cortical microstructure between tension
and compression cortices. This was based on the fact
that the mechanical properties of cortical bone are
markedly different in tension and compression (Ske-
dros et al., 1994).

Transcortical Differences in Osteon Parameters

Lanyon (1973, 1974) showed that the magnitude of in
vivo compressive strains measured on sheep calcanei
were typically greater than the magnitude of tensile
strains. Since strain mode differences coexist with
strain magnitude differences, the relative influences
that these strain features have on the structural/ma-
terial organization of the cortical bone are seemingly
inseparable, Experimental evidence suggests that
strain magnitude, independent of strain mode, may be
important in bone adaptation (Albright, 1987; Currey,
19844a; Frost, 1990a,b; Martin and Burr, 1989; Rubin
and Lanyon, 1985). Since, in homogenous materials,
strain magnitude varies directly with distance from
the neutral axis of bending, we made comparisons be-
tween regions across each cortex. The lack of differ-
ences in osteon population density, percent of remod-
eled cortex, or fraction of interstitial bone between
pericortical and middle regions of either tension or
compression cortices, suggests that it is unlikely that
there is a linear strain-magnitude-related microstruc-
tural adaptation between regions of these cortices.
However, bone is anisotropic and often non-homoge-
nous and thus linear strain magnitude differences
across the cortex would not necessarily be expected. It
is possible that differences in the structural/material
crganization within a cortex contribute to the non-uni-
form strain patterns across the cortex. An alternative
theory suggesting that strain-magnitude-related mi-
crostructural adaptation occurs across the cortex of a
bone has been proposed by Frost (1990b) and is dis-
cussed in a separate section of this paper. o

Osteon Population Density, Size, and Heconstru&ﬁon

Unguantified observations suggest that the greatest
osteon population density often appears within the
cornpression cortex of bones loaded habitually in bend-
ing (Bouvier and Hylander, 1981; Carter et al., 1981;
Gies and Carter, 1982; Lanyon and Bourn, 1979;
Lanyon et al., 1979; Portigliatti-Barbos et al., 1983).
Results of the present quantitative study show that in

the cantilevered mule deer ealcaneus, the compression
cortex has 11.4% more osteons per mm? (P < 0.01),
43.5% more interstitial bone (P < 0.01), and 80.2%
lower porosity (P < 0.01) than the tension cortex. Thus,
in the compression cortex, osteons are smaller. Using
human compact bone specimens, Evans and co-workers
showed that specimens with greater tensile strength or
fatigue life typically had fewer, larger, and, in some
instances, more irregularly shaped osteons (Evans,
1958; Evans and Bang, 1966, 1967; Evans and Riola,
1970; Evans and Vincentelli, 1974). Significant nega-
tive correlations have been shown between percentage
of secondary osteons and impact tensile strength (Saha
and Hayes, 1977) and fatigue life (Carter and Hayes,
1976). However, these previous studies did not specif-
ically compare bone regions that were habitually
loaded in tension vs. compression strain modes. In a
study of fracture mechanics of cortical bone from com-
pression (medial) and tension (lateral) aspects of prox-
imal canine diaphyses, Moyle et al. (1978) found that
the work-to-failure for slow tensile cracking (allowing
for maximum energy absorption) was significantly
higher in bone specimens from the tension domain. The
specimens that failed by slow crack propagation had a
greater osteon population density in the immediate vi-
cinity of the fracture site. However, the average osteon
diameter and osteon population density did not signif-
icantly differ between compression and tension corti-
ces. In contrast, Moyle and Bowden (1984) showed that
the work required to fracture specimens of human fem-
oral bone in three-point bending was related to osteon
cross-sectional area. Martin and Burr (1989, pg. 196)
considered the regional difference in resistance to ten-
sile cracking to be a manifestation of regional adapta-
tion to these strain mode differences. We suggest that
mechanically relevant differences in bone microstruc-
ture, if present, would be more evident in the mule deer
calcaneus since it is a simply loaded, unambiguous ten-
sion/compression system, in contrast to the more com-
plex loading conditions in proximal canine and human
femora. Although the results of the present study do
not prove that bone adapts to habitual and prevailing
regional differences in strain mode, the literature re-
viewed above supports the hypothesis that these micro-
structural differences represent mechanically relevant
adaptation.

Some investigators have suggested that topographic
differences in osteon microstructure are remnants Qf
regional differences in growth rates and related cortl-
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cal drift phenomena and hence are not manifestations
of adaptations to local differences in loading conditions
(de Ricgles et al., 1991; Enlow, 1962, 1963; Smith,
1960). For example, Enlow (1962, 1963) noted that dur-
ing bone growth in diaphyseal/metaphyseal regions,
individual trabeculae are progressively incorporated
into the cortex which yields osteons and interstitial
bone with a variety of irregular shapes, proportions,
and sizes. However, micromorphologies attributable to
growth or cortical drift would be expected to be mini-
mal in older skeletally mature animals since remodel-
ing, and hence potential adaptation, continues after
growth and cortical drift have ceased. Larger osteons
and increased central canal size (hence, increased po-
rosity) have also been described in the cortical bone of
patients with postmenopausal osteoporosis and are at-
tributed to increased remodeling rates (Burr and Mar-
tin, 1989).

Cortical Porosity

In both the compression and tension cortices of the
mule deer calcaneus, the porosity was equivalent be-
tween pericortical and middle regions, but increased in
the endocortical regions. This difference in porosity
may accompany differences in remodeling, where the
rate of remodelling and the degree of porosity is typi-
cally greater in the endocortical region than in the
middle and pericortical regions of diaphyseal bone
(Amprino and Godina, 1947; Atkinson and Woodhead,
1973; Bouvier and Hylander, 1981; Currey, 1984b;
Frost, 1990a,b; Martin, 1991; Martin et al., 1980;
Smith and Walmsley, 1959; Vasciaveo and Bartoli,
1961). Other factors may also contribute to the in-
creased osteon size and porosity in the endocortical re-
gions, including the greater degree of blood supply in
the endosteal envelope (Vasciaveo and Bartoli, 1961),
and the larger vessels in the endocortical regions
{Singh et al., 1991). The insertion of the plantar liga-
ment may also affect porosity in the tension cortex by
requiring enhanced perfusion, by altering the quality
or complexity of the local loading conditions (Lanyon et
al., 1979), or by requiring more bone surface area to
accommodate its insertion. We emphasize that inter-
pretations of cortical porosity based solely on loading
history should be considered provisional in the mule
deer calcaneus.

Support for Sirain-Magnitude-Dependent Adaptation:
Frost's Tension/Compression System

Lanyon’s (1973, 1974) in vivo strain measurements
on the lateral cortex of sheep calcanei showed peak
strain levels of approximately 160 microstrain in ten-
sion and 240 microstrain in compression. Frost
{1988a,b, 1990a,b) suggests that differences in strain
magnitudes between tension and compression cortices,
in addition to surface curvature and strain mode, pro-
duce mechanically relevant differences in cortical
structural/material organization in skeletal tension/
compression systems. In his models, however, strain
magnitude is considered to have a preeminent role in
governing bone remodeling (Frost, 1990b). He predicts
that the compression cortex will be thicker, more
highly mineralized and less porous than the tension
cortex, and will have osteons that are smaller and more
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numerous than those in the tension cortex. The data in
the present study are consistent with this hypothesis.

Frost (1990b) describes three remodeling intervals,
each defined by different levels of strain magnitude,
and each characterized by different remodeling activi-
ties: (1) remodeling is activated below a “minimum ef-
fective strain” (MES) and ultimately yields increased
porosity, (2) remodeling is repressed by conditions of
normal mechanical usage above an MES but below the
excesgive straing that cause microdamage, and (3) re-
modeling is again activated above excessive strain
magnitudes and ultimately yields decreased porosity.
The lower porosity, more interstitial bone and the
smaller osteons found in the compression cortex, seems
‘to be, according to Frost’s analysis, largely a result of
strain magnitudes above the MES. In contrast, the ten-
sion cortex may be stress shielded by the load-sharing
tension members (i.e., plantar ligament and tendon of
superficial digital flexor) which may cause the habit-

“ual strains in this cortex to be lower than the MES of a

cortex loaded in tension. The tendency for these tension
members to shift the neutral axis toward the tension
cortex may further serve to reduce stress in this cortex.

The differences between the endocortical envelope
and other regions of the mule deer calcaneus may also
be related to the differences in strain-magnitude-re-
lated remodeling thresholds. In the mule deer calca-
neus, strain magnitude progressively increases from
the endosteum to the periosteum. It is possible that
strains in the endocortical region are below the MES,
and that maximal strains in the pericortical and mid-
dle regions are above this MES, but below the thresh-
old required for microdamage-mediated remodeling
(Frost, 1990b). Consequently, different remodeling ac-
tivities would not necessarily be expected between pe-
ricortical and middle regions. This could explain why
increased remedeling activity and remodeled bone was
not seen at the pericortical margins of the limb bones
examined by Currey (1984b). Therefore, the Iack of os-
teon microstructure or porosity differences between pe-
ricortical and middle regions does not necessarily pre-
clude the hypothesis that strain-magnitude-related
influences are manifest in bone organization.

The coexistence of increased number of osteons and
apparently decreased remodeling rate in the compres-
sion cortex cannot be explained entirely by Frost’s the-
ory. In the compression cortex, the increased number of
osteons would indicate an antecedent history of pre-
vailing strain magnitudes above the microdamage
threshold, but the decreased remodeling rate in the
sections examined would indicate a more recent history
of prevailing strain magnitudes below the microdam-
age threshold. Therefore, the described differences in
the cantilevered artiodactyl calcaneus may be related
in part to differences in strain mode.

The microstructural differences described between
the tension and compression cortices of the mule deer
calcaneus may be adaptations that are related to the
regional differences between prevailing strain modes
and/or magnitudes. Although these differences are as-
sociated with differences in prevailing strain mode,
equally tenable associations with strain magnitude dif-
ferences cannot be rejected based on these data alone. If
the microstructural differences described in the
present work represent relevant mechanical adapta-
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tion to the prevailing strain environment, it follows
that these characteristics, particularly in the compres-
sion cortex, may have been optimized by integrative
activity of local bone multicellular units for the normal
physiologic strain environment engendered in this
bone. However, generalizing these data solely in the
context of mechanically based interpretations would be
reckless since there are tenable nonadaptive explana-
tions for some of the differences described, in the
present study. In order to further test the hypothesis
that there may be regional differences in bone organi-
zation which reflect local and/or regional regulation of
cellular responses to specific strain stimuli, additional
studies examining this idea are warranted.
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