The artiodactyl calcaneus as a potential ‘control bone’ cautions against simple interpretations of trabecular bone adaptation in the anthropoid femoral neck

Kristofer D. Sinclaira,b, Ryan W. Farnswortha,b, Theresa X. Phama,b, Alex N. Knighta, Roy D. Bloebauma,b, John G. Skedrosa,b,1,1

aBone and Joint Research Laboratory, Department of Orthopedics, 590 Wakara Way, Salt Lake City, UT 84108, USA
bUniversity of Utah School of Medicine, Department of Orthopedics, 500 Foothill Boulevard, Salt Lake City, UT 84148, USA
1Corresponding author.

11 5323 South Woodrow Street, Suite 200, Salt Lake City, UT 84107, USA.

E-mail addresses: kristofer.sinclair@hsc.utah.edu (K.D. Sinclair), rfarnsw825@gmail.com (R.W. Farnsworth), txp@comcast.net (T.X. Pham), alexknight9@hotmail.com (A.N. Knight), roy.bloebaum@hsc.utah.edu (R.D. Bloebaum), jskedrosmd@uosmd.com (J.G. Skedros).

1See front matter Published by Elsevier Ltd. http://dx.doi.org/10.1016/j.jhevol.2013.01.003

1Author's personal copy

ABSTRACT

For over a century, the arched trabecular patterns of the human proximal femur have been considered to resemble tension and compression stress trajectories produced by stereotypical bending loads. This reflects conventional modeling of the human femoral neck—head region as a short cantilevered beam. Although this conception is the foundation of many biomechanical, clinical, paleontological, and comparative morphological studies of trabecular bone in various species, attempts have not been made to contrast these data to a bone that could be considered a ‘control’ for simple/stereotypical bending. We quantified trabecular architectural characteristics in sheep and deer calcanei as a first step in potentially establishing them as ‘controls’ in this context because they have arched trabecular patterns that resemble tension/compression stress trajectories, and have been shown by strain gauge measurements to be relatively simply loaded in bending. Using micro-computed tomography, calcanei from adult domesticated sheep and wild deer were analyzed where in the dorsal/plantar difference. However, this was paradoxically opposite in the sheep calcanei. Aside from Tb.N, the architectural characteristics showed little, if any, evidence of habitual bending. The non-uniformity of the stresses between the trabecular tracts in these bones might be reduced by load-sharing functions of their robust cortices and the nearby ligament and tendon, which might account for the similar morphologies between the tracts. These findings may help to explain why in many cases regional trabecular architectural variations seem to lack sufficient sensitivity and specificity for interpreting habitual bending in other bone regions. This cautions against simple interpretations of trabecular bone adaptation in the anthropoid femoral neck.

A R T I C L E I N F O

Article history:
Received 7 March 2012
Accepted 9 January 2013
Available online 5 March 2013

Keywords:
Cancellous bone
Trabecular architecture
Wolff’s law

Introduction

Femoral neck fractures can result in severe impairment of mobility and lifestyle, and in the elderly they are also associated with a mortality rate that can exceed 20% within two years of fracture (Boonen et al., 2004; Adachi et al., 2010; Ma et al., 2011). This has led to extensive studies of the biomechanics, structure, and histomorphology of the femoral neck in an attempt to understand the intrinsic factors that predispose individuals to fractures in this region. The natural history of this malady has also been considered in the context of developmental and evolutionary modifications of hip functional morphology associated with different degrees and types of physical usage and locomotor behaviors, the emergence of bipedalism, and the longevity of some modern populations (Lovejoy, 1988, 2004; Lovejoy et al., 2003; Mayhew et al., 2005; Fajardo et al., 2007; Kaptoge et al., 2007; Poole et al., 2010; Ryan and Walker, 2010; Shaw and Ryan, 2012). These studies have also advanced our understanding of the development and functional roles of cortical and trabecular (cancellous) bone mass, architecture, and histomorphology during normal loading of the femoral neck and how aging can change these relationships and ultimately...
increase the risk of fragility fractures (Osborne et al., 1980; Lotz et al., 1995; Bell et al., 1999; Loveridge et al., 2004; Mayhew et al., 2005; Ryan and Krohnitz, 2006; Manske et al., 2009; Djuric et al., 2010; Milovanovic et al., 2012). These considerations are also highly relevant in comparative studies that attempt to interpret load history of proximal femora of extinct and extant hominids and non-human anthropoids (Rafferty, 1998; Macchiarelli et al., 1999; Lovejoy et al., 2002; MacLatchy and Muller, 2002; Viola, 2002; Fajardo et al., 2007; Shaw and Ryan, 2012). In these studies of proximal femora, trabecular bone architectural patterns and variations are used to infer load history because in metaphyseal-epiphysial regions they often seem more revealing and/or are better preserved than the histomorphology of the cortex. Consequently, these retrospective studies attempt to detect ontogenetic/phylogenetic patterns or changes in the load history of the proximal femur by considering potential functionally relevant associations in the spatial distributions of trabecular architectural characteristics.

Although the human femoral neck region is clearly complexly loaded (Lotz et al., 1995; Mourtada et al., 1996; Pidaparti and Turner, 1997; Rudman et al., 2006; Thomas et al., 2009), the stress transfer through this region is often simplified as a short cantilevered beam loaded in bending (Cristofolini et al., 1996; Martin et al., 1998; Demes et al., 2000; Lovejoy et al., 2002; Kaptoge et al., 2007; Skedros and Baucom, 2007). In turn, loading of this beam-like structure produces net tension in the superior aspect and net compression in the inferior aspect, with increased shear stresses in the middle region where longitudinal stresses are reduced (Pidaparti and Turner, 1997; Lovejoy, 2004). The arched trabecular patterns seen in anterior–posterior radiographs of the human proximal femur have traditionally been considered evidence supporting this load history (Skedros and Baucom, 2007; Skedros and Brand, 2011). However, additional specific trabecular architectural characteristics as possible correlates of habitual bending in this region have neither been clearly nor consistently demonstrated by many studies that have attempted to identify these in modern humans and in extinct and extant anthropoids (Rafferty, 1998; MacLatchy and Muller, 2002; Viola, 2002; Fajardo et al., 2007; Djuric et al., 2010; Ryan and Walker, 2010; Milovanovic et al., 2012; Shaw and Ryan, 2012). A significant challenge in these studies appears to be the lack of normative data from a ‘control bone’; for example, a bone that is quasi-beam-like, has similar arched trabecular patterns, and a known strain history (i.e., based on in vivo or ex vivo strain data).

Figure 1. (A) Anterior-to-posterior radiograph of a thin-sectioned (~3 mm) human proximal femur. The section was made with the bone in internal rotation in order to orient the proximal femur in neutral (0°) anteversion (Skedros and Baucom, 2007). (B) Lateral-to-medial radiograph of a thin-sectioned (~3 mm) right calcaneus from an adult male deer. Sectioning removed the anterior and posterior (femur) or medial and lateral (calcaneus) cortical bone in order to accentuate the arched trabecular patterns.
The present study focuses on quantifying regional variations in trabecular architecture in calcanei from wild deer and domesticated sheep as an initial step toward establishing these models as control bones for studies examining the relationships between trabecular architectural characteristics and stress transfer in the hominid femoral neck. These models might also serve as control bones for regions of bones from other anthropoid and non-anthropoid species that are thought to be, though to varying degrees, loaded in bending. Despite many studies of trabecular architectural characteristics of the human femoral neck (Whitehouse and Dyson, 1974; Carter et al., 1989; Lai et al., 2005; Blain et al., 2008; Liu et al., 2008; Jang and Kim, 2009; Thomas et al., 2012; Mittra et al., 2005; Diederichs et al., 2009), where yielding at local principal stresses occurs in the range of 88–121 MPa for compression and 35–43 MPa for tension (Nagaraja et al., 2005; Jungmann et al., 2011), and

(4) Microdamage initiation and propagation, and probably morphology, occur differently and asymmetrically in tension, compression, and shear (Nyman et al., 2009; Wu and Niebur, 2012), where yielding at local principal stresses occurs in the range of 88–121 MPa for compression and 35–43 MPa for tension (Nagaraja et al., 2005; Jungmann et al., 2011), and

(5) Trabecular architecture is highly sensitive to changes in prevalent/predominant load direction and magnitude (Ponterz et al., 2006; van der Meulen et al., 2006, 2009; Barak et al., 2011).

By focusing on the adaptability of specific trabecular architectural characteristics, we recognize that we do not account for the influences of local differences in cortical mass and other stress-carrying members (e.g., ligaments and tendons) on trabecular stresses and strains. While it is important to eventually account for these influences, there are data showing that specific/isolated trabecular architectural characteristics can explain significant proportions of variance in mechanical properties (Table 1) (Ulrich et al., 1999; Mittra et al., 2005; Diederichs et al., 2009; Liu et al., 2010). From this perspective, coupled with the mechanistic hypothesis, calcanei from domesticated sheep and wild deer were analyzed in terms of four predictions:

1. The mid-shaft will show dorsal/plantar architectural differences. In the mid-shaft, where the dorsal and plantar trabecular tracts begin to separate, this likely reflects a means for accommodating the intrinsic mechanical disparities in strain mode-specific loading that is linked to relatively simple bending in this location. (Here we adopt the view that enhancements will occur in the plantar ‘tension’ tract because of its comparatively deficient mechanical properties) (Table 2A).

2. The distal shaft will show fewer dorsal/plantar differences than the mid-shaft. In the distal shaft, where the dorsal and plantar tracts show extensive interconnections, this likely occurs as the consequence of locally increased trabecular mass compared to cortical mass, trabecular interconnectedness, and increased load complexity in the distal shaft, which would be expected to reduce differences in ambient strain magnitudes between the dorsal and plantar tracts.

3. The mid-shaft will show dorsal/middle/plantar architectural differences. The middle region between the dorsal and plantar tracts of the mid-shaft will show variations that likely reflect

Table 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elastic modulus</td>
<td>Maximum stress</td>
<td>BV/TV (r = 0.85)</td>
<td>BV/TV (r = 0.85)</td>
<td>BV/TV, DA (R² = 0.82)</td>
</tr>
<tr>
<td>1</td>
<td>SMI (r = −0.90)</td>
<td>BV/TV (r = 0.90)</td>
<td>BV/TV (r = 0.85)</td>
<td>BV/TV (r = 0.86)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BS/BV (r = −0.73)</td>
<td>Thn Th (r = 0.61)</td>
<td>Thn Th (r = 0.57)</td>
<td>Thn Th (r = 0.50)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Thn (r = −0.62)</td>
<td>Thn Th (r = 0.57)</td>
<td>Thn Th (r = 0.50)</td>
<td>Thn Th (r = 0.65)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Thn Th (r = −0.61)</td>
<td>Thn Th (r = 0.50)</td>
<td>Thn Th (r = 0.45)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Species & Bone</td>
<td>Loading Method</td>
<td>Characteristics</td>
<td>AD: BS/BV; Conn.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult Human</td>
<td>Finite Element Model</td>
<td></td>
<td>D; SMI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distal Tibia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcaneus</td>
<td>Ex Vivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult Human</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcaneus</td>
<td>Ex Vivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult Human</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcaneus</td>
<td>Ex Vivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult Sheep Distal Tibia</td>
<td>JS/BS/BV; Conn.</td>
<td>D; SMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Femoral Condyles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult Human</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Femoral Head</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DA = degree of anisotropy; BV/TV = bone volume fraction; BS/BV = bone surface density; Thn Th = trabecular thickness; Thn Sp = trabecular spacing; Thn = trabecular number; Conn.D = connectivity density; SMI = structure model index. * = characteristics not measured with respect to the present study. Data used are from the following studies of trabecular bone (Ulrich et al., 1999; Mittra et al., 2005; Diederichs et al., 2009; Liu et al., 2010). The ‘sign’ of the correlations in the Mittra et al. (2005) and Diederichs et al. (2009) studies was provided by written personal communications with the corresponding authors (January and February, 2012).
low strains/stresses and/or the increased prevalence of shear stresses, as expected in neutral axis regions where the stress trajectories intersect (Table 2B).

4. The distal shaft will show fewer dorsal/middle/plantar differences than the mid-shaft. Compared with the mid-shaft, the distal shaft will show less distinct/consistent dorsal/middle/plantar variations as the likely consequence of more extensive trabecular interconnectedness, in addition to increased load complexity in the distal shaft.

Materials and methods

One calcaneus was obtained from each of 13 skeletally mature (two year old) female domesticated sheep (Ovis aries; breed is crossed Suffolk/Hampshire and Rambouillet) and from each of 13 mature (three–four years old) male wild Rocky Mountain mule deer (Odocoileus hemionus hemionus). The sheep were raised in paddocks where they were grown for human consumption. The deer were obtained from their natural habitat during a hunting season. All bones were screened for trauma and fractures during the butchering process. While the exact mass of each animal was not known, the ranges for the ages are known for the herds from which the animals were obtained (deer, 60–74 kg; sheep, 56–66 kg). The bones were dissected free of soft tissue. Biomechanical 'length' measurements were made from previously defined 0% (distal)–100% (proximal) aspects of the shaft, which correspond to the 'free' and 'fixed' ends of the bone, respectively (Skedros et al., 1994a). The 0% location was at the distal–dorsal 'notch' and the 100% was located at the center of the proximal articular surface (Figure 2A). As described below, segments from the 20, 30, 40 and 50% locations of the shaft were used. The 40 and 50% segment locations are considered to be from the 'mid-shaft', and the 20 and 30% segment locations are considered to be from the 'distal shaft' (Figure 2B).

In vivo and ex vivo studies of the artiodactyl calcaneus model

The in vivo strain data reported by Lanyon (1973, 1974) in domesticated sheep calcanei were obtained from varying lateral locations of the cortex while the animals walked and trotted. The ex vivo strain data in deer calcanei were obtained from bones that were loaded in a fixed position simulating mid-stance of walking and running gaits (Su, 1998; Su et al., 1999). In addition to influences of strain mode, we recognize that functional adaptation of some specific trabecular characteristics could be evoked by stress/strain magnitude (van der Meulen et al., 2009). When compared with the plantar aspect of these bones, stresses would be expected to be greatest in both the dorsal 'compression' trabecular tract and its adjacent cortex (Skedros et al., 2001). We also recognize that we are at risk of oversimplifying the load history of these bones because of the limited in vivo strain data for the sheep and the lack of in vivo strain data for the deer (discussed further below). Finally, indirect evidence supporting the probability that multidirectional stresses are relatively more prevalent in the distal shaft includes: (1) the reduced mineralization differences between the dorsal and plantar cortices toward the distal shaft (the peak difference is in the mid-shaft) (Skedros et al., 1994b), and (2) the comparatively circular cross-sectional shape of the distal shaft is a morphology that is commonly associated with the increased torsion seen toward the ends of bones (Currey, 2002; Zebazet et al., 2005). It is for these reasons that we stated different predictions for the mid-shaft versus distal shaft.

High resolution micro-computed tomography (micro-CT)

The bones were scanned using a GE Medical Systems EVS-RS9 micro-CT scanner (46.4 μm resolution, 80 kVp, 450 μA, and exposure time of 500 ms). All images included cortical and trabecular bone, and were exported as 16-bit VFP files. Image reconstructions were centered at 20, 30, 40, and 50% of the length of the intact shaft of each bone, and each reconstructed segment was 4 mm thick and spanned the entire transverse breadth of the bone. In each of the four segments, three volumes of interest (VOI) were selected: the dorsal, middle, and plantar regions in the trabecular envelope (Figure 2C). In these VOI all of the trabecular bone were sampled except for the bone within 0.5 mm from the cortex. The sizes of the VOI (mm³, mean ± standard deviation) are: (1) deer mid-shaft: dorsal (105 ± 40), middle (159 ± 35), and plantar (147 ± 35); (2) deer distal shaft: dorsal (201 ± 46), middle (274 ± 76), and plantar (297 ± 66); (3) sheep mid-shaft: dorsal (202 ± 65), middle (215 ± 37), and plantar (264 ± 75); and (4) sheep distal shaft: dorsal (314 ± 84), middle (300 ± 67), and plantar (340 ± 79).

Analysis of the scanned segments was conducted with commercially available software (General Electric (GE) Health Care MicroView version ABA 2). The eight trabecular architectural characteristics that were analyzed in each VOI (3 VOI/segment) are listed below. The degree of anisotropy (DA) was determined using QUANT3D software (IDL Virtual Machine; Boulder, Colorado, USA) in terms of the star volume distribution method as described elsewhere (Odgaard et al., 1997; Ketcham and Ryan, 2004). For this analysis, three additional and relatively smaller spherical VOI were selected within the larger volumes that were used to measure the other seven characteristics. These smaller VOI were also from the dorsal, middle, and plantar regions of each segment location. These VOI were 62 voxels in diameter (3.0 mm; edge of one voxel = 0.048 mm), and they were centered at 80% (dorsal), 50%, and 20% (plantar) of the medullary height, as measured in the sagittal plane.

The eight characteristics that were quantified included:

(1) Degree of anisotropy [DA (unitless); larger values = increased alignment of trabeculae],

(2) Bone volume fraction [BV/TV (%); bone volume ÷ total volume of VOI],

(3) Bone volume [BV (mm³)],

(4) Total volume of VOI [TV (mm³)],

(5) Total volume of trabecular bone [TVb (mm³)],

(6) Trabecular separation [TS (mm)],

(7) Volume fraction of trabecular bone [TVb/TV (%)],

(8) Trabecular separation fraction [TS/TV (%)].

Table 2

<table>
<thead>
<tr>
<th>A. Prediction 1</th>
<th>B. Prediction 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predications</td>
<td>Actual results</td>
</tr>
<tr>
<td>Deer</td>
<td>Sheep</td>
</tr>
<tr>
<td>DA</td>
<td>Dorsal < Plantar</td>
</tr>
<tr>
<td>BV/TV</td>
<td>Dorsal < Plantar</td>
</tr>
<tr>
<td>BS/BV</td>
<td>Dorsal > Plantar</td>
</tr>
<tr>
<td>Tb.Th</td>
<td>Dorsal > Plantar</td>
</tr>
<tr>
<td>Tb.Sp</td>
<td>Dorsal > Plantar</td>
</tr>
<tr>
<td>Tb.N</td>
<td>Dorsal < Plantar</td>
</tr>
<tr>
<td>Conn.D</td>
<td>Dorsal < Plantar</td>
</tr>
<tr>
<td>Subset (n = 7)</td>
<td>D – P</td>
</tr>
</tbody>
</table>

Mid-shaft only (where tracts begin to separate); Dorsal (D) = 'compression' and highest strain; Middle (M) = 'shear' and lowest strain; Plantar (P) = 'tension' and intermediate strain. Predictions are based on mechanical testing data from Keaveny et al. (1994a,b, 2001), Bayraktar et al. (2004), and Mittra et al. (2005). If we had adopted the alternative view that there would be greater enhancement in the 'compression regions', then the following characteristics would have been consistent with predictions (deer: none; sheep: Tb.Sp, Tb.N, and Conn.D).
(3) Bone surface density [BS/BV (mm\(^{-1}\)], bone surface \(\div\) bone volume],
(4) Trabecular thickness [Tb.Th (mm)],
(5) Trabecular spacing [Tb.Sp (mm), average trabecular separation],
(6) Trabecular number [Tb.N (no. mm\(^{-1}\)],
(7) Connectivity density [Conn.D (no. mm\(^{-3}\)], density of interconnected trabeculae], and
(8) Structure model index [SMI (unitless); honeycomb-, plate-, or rod-like trabeculae].

Descriptions of these characteristics can be found in prior studies (Hildebrand and Ruegsegger, 1997a,b; Muller et al., 1998; Hildebrand et al., 1999; Fajardo and Muller, 2001; MacLatchy and Muller, 2002; Fajardo et al., 2007).

The SMI reflects the presence and distribution of trabecular morphologic types (Hildebrand and Ruegsegger, 1997b; Hildebrand et al., 1999). In an ideal plate-like structure the SMI value is 0, and in an ideal rod-like structure the SMI value is 3 (Hildebrand and Ruegsegger, 1997b). Negative SMI values represent low porosity concave plate-like structures resembling honeycombs, and are sometimes referred to as spherical voids or ‘Swiss cheese’ architecture (Hildebrand et al., 1999; Stauber and Muller, 2006). The degree of anisotropy (DA) measures trabecular alignment along a preferred axis. At values equal to 1 trabecular tissue is entirely isotropic (no preferred orientation) and as DA increases above 1 trabecular tissue becomes more anisotropic (i.e., more aligned) (Fajardo and Muller, 2001; Maga et al., 2006).

Statistical analysis

A three-way ANOVA design was used to assess effects and interactions between region, section location, and species. Paired t-tests were used for comparisons among dorsal, middle, and plantar regions at each section location (mid-shaft, distal shaft) within each species. Pearson correlation coefficients (r values) were determined to identify associations between pairs of the trabecular architectural characteristics data, and between cortical thickness (Ct.Th) and each trabecular characteristic within each species. This was accomplished by comparing the trabecular architecture characteristics of the dorsal and plantar tracts to the thickness of their neighboring cortex. An alpha level of \(\leq 0.05\) was considered statistically significant.

Additional analyses were also conducted to determine if there are relationships between the sizes of the VOIs analyzed and each of the seven trabecular architectural characteristics (DA was not included because it was measured using a fixed VOI). These analyses were accomplished in three steps. First, Pearson correlation coefficients were determined for comparisons of each of the seven trabecular architectural characteristics with the VOIs from which they were obtained. Second, paired t-tests were used to determine if differences in the sizes of the VOIs of the dorsal and plantar tracts were statistically significant in the mid-shaft and distal shaft locations of each species. The middle regions were not included in this step in order to simplify the analysis. Third, subsets of seven VOIs from each of the dorsal and plantar tracts were obtained after paired comparisons showed that these subsets of dorsal versus plantar VOIs were not significantly different. Paired t-tests were then repeated to determine if the dorsal versus plantar difference (or similarity) of Conn.D and SMI obtained from these VOI subsets changed at the mid-shaft and distal shaft locations. Only Conn.D and SMI data were used in this final step because they: (1) are the only trabecular characteristics that (in step 1) showed correlations with VOI size (described below), and (2) are the trabecular characteristics analyzed in this study that are most likely to be influenced by VOI size variations (Kivell et al., 2011; Lazenby et al., 2011).

Results

Representative CT images of some of the cross-sections and VOIs from each species are shown in Figures 3 and 4. ANOVA results showed significant effects of shaft location and species for all characteristics measured. The effect of region is consistent with results of paired t-tests described below, which focus on the data in...
regions and shaft locations within each species (Table 3). Because many characteristics are interdependent as a result of their physical association, the correlation coefficients (Table 4) are considered primarily in terms of characteristics that are less interdependent. Results of correlations between trabecular architectural characteristics and nearby cortical thickness are shown in Table 5.

Additional analyses of potential effects of differences in VOI size

VOIs were significantly greater in the plantar tracts of both shaft locations in the deer calcanei and only in the mid-shaft location in sheep calcanei. Correlation analyses conducted between each of the seven trabecular architectural characteristics and VOI size of the dorsal tract, plantar tract, and middle regions showed that the only correlations that exceeded the absolute value of \(r = 0.3 \) occurred in the distal shaft of deer calcanei (Conn.D, \(r = 0.36 \); SMI, \(r = 0.38 \); \(p \) values < 0.005). SMI and Conn.D results from the subset (\(n = 7 \)) of similarly sized VOIs from each dorsal and plantar tract of each shaft location of the deer calcanei indicate: (1) dorsal/plantar SMI data remained non-significant at both shaft locations (Table 2), (2) the dorsal/plantar difference in Conn.D at the mid-shaft became non-significant (\(p = 0.1 \)) (Table 2), and (3) the dorsal/plantar difference in Conn.D at the distal shaft remained significant and the sign of the difference remained the same.

Prediction 1: the mid-shaft will show dorsal/plantar architectural differences

Deer calcanei When all data are considered, the only characteristic that differed in the manner predicted was Tb.N, which is greater in the plantar (tension) region (\(p = 0.01 \)). In deer calcanei, the SMI values in dorsal (-2.62 ± 0.65) and plantar (-3.13 ± 0.39) regions are both indicative of honeycomb-like trabecular structure. Contrary to expectations in Prediction 1 (Table 2), the deer mid-shaft calcanei showed no statistical differences between dorsal and plantar tracts, and no significant differences that correspond with the sign (‘>’ or ‘<’) of this difference inverted (i.e., was plantar > dorsal, and became dorsal > plantar). The results of the final step of this analysis in sheep calcanei indicate that: (1) dorsal/plantar SMI data remained non-significant at both shaft locations (Table 2), (2) the dorsal/plantar difference in Conn.D at the mid-shaft became non-significant (\(p = 0.1 \)) (Table 2), and (3) the dorsal/plantar difference in Conn.D at the distal shaft remained significant and the sign of the difference remained the same.
Means and standard errors (SEM) are shown. The superscripted letters indicate statistical significance (p<0.05) between the dorsal (D), middle (M) and plantar (P) VOIs. Bolded text = dorsal and plantar locations are statistically different (p<0.05). The distal shaft of deer calcanei only showed one statistically significant difference (plantar > dorsal, as predicted) when the analysis used subset data from similar size VOIs. The latter only held for BS/BV, which might reflect BV/TV variations (i.e., higher BV/TV in the deer, and regionally lower BV/TV in the middle regions of both species). Figure 6 shows that the SMI data from the middle regions of both species were obtained from VOIs that had relatively low BV/TV when compared to dorsal and plantar tracts. This helps to explain the lack of, or relatively low, correlations of SMI with BV/TV in the middle regions of mid-shaft locations of both species (Table 4).

The general conclusions do not change even if the expectations in Prediction 1 are reversed to conform to the alternative view that the relatively more highly stressed compression environment would show mechanical enhancements of trabecular bone. In this case, the deer mid-shaft shows a complete lack of correspondence (in Prediction 1 only Tb.N was consistent) and the sheep mid-shaft shows differences in Tb.Sp, Tb.N, and Conn.D instead of only BS/BV.

Prediction 2: the distal shaft will show fewer dorsal/plantar differences than the mid-shaft

The distal shaft of deer calcanei only showed one statistically significant dorsal/plantar difference (plantar > dorsal, Conn.D), but this significant difference inverted (dorsal > plantar) when the subset of VOIs of similar size was considered. These results do not provide strong support for the mid-shaft versus distal shaft comparison of Prediction 2 (i.e., more differences in the mid-shaft). The data in sheep calcanei also generally reject Prediction 2 by showing more dorsal versus plantar differences in the distal shaft than in the mid-shaft (six of eight characterstics versus four of eight characterstics, respectively).

Prediction 3: the mid-shaft will show dorsal/middle/plantar architectural differences

In both species (when all data are considered), five of eight characteristics showed the ‘patterns’ of the expected differences in Prediction 3 (Table 2). The exceptions included dorsal/middle/plantar patterns in DA, Tb.N, and Conn.D. (‘Patterns’ refers to instances when the middle region differs from the dorsal and plantar regions, regardless of whether or not the dorsal and plantar regions are significantly different.) The data therefore show that in the mid-shaft the middle region generally differs from the other two regions even though only one characteristic in each species showed a dorsal/plantar difference that satisfied Prediction 1.

Prediction 4: the distal shaft will show fewer dorsal/middle/plantar differences than mid-shaft

In the deer calcanei (when all data are considered), five of eight characteristics (BV/TV, BS/BV, Tb.Th, Conn.D, and SMI) showed similar patterns in differences of trabecular architectural characterstics between the dorsal/middle/plantar regions in both the mid-shaft and distal shaft, which is not consistent with Prediction 4. These results contrast with data in the sheep calcanei where only one of eight characterstics (BV/TV) showed the predicted dorsal/middle/plantar differences in the distal shaft when compared to five of eight found in the mid-shaft. The latter finding is consistent with Prediction 4.

Discussion

The architectural characterstics that have often been shown to be most important in conveying trabecular bone strength and stiffness (BV/TV, DA and SMI) did not significantly differ between the dorsal and

Table 3

Tabulated data for the trabecular bone analysis of: (A) 13 mule deer calcanei, and (B) 13 sheep calcanei. A. Deer calcanei t-test results [mean (standard error)]. B. Sheep calcanei t-test results [mean (standard error)].

Mid-shaft (40–50% locations)

<table>
<thead>
<tr>
<th></th>
<th>Dorsal</th>
<th>Middle</th>
<th>Plantar</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td>4.99M (0.31)</td>
<td>6.09P<sup>0.06</sup></td>
<td>4.25M (0.33)</td>
</tr>
<tr>
<td>BV/TV</td>
<td>0.54M (0.03)</td>
<td>0.34P<sup>0.01</sup></td>
<td>0.56M (0.02)</td>
</tr>
<tr>
<td>BS/BV</td>
<td>5.59P<sup>0.37</sup></td>
<td>9.33P<sup>0.30</sup></td>
<td>5.95M (0.35)</td>
</tr>
<tr>
<td>Tb.Th</td>
<td>0.44P (0.04)</td>
<td>0.25P<sup>0.01</sup></td>
<td>0.41M (0.05)</td>
</tr>
<tr>
<td>Tb.Sp</td>
<td>0.58M (0.06)</td>
<td>0.71<sup>0.11</sup></td>
<td>0.47M (0.03)</td>
</tr>
<tr>
<td>Tb.N</td>
<td>1.46P<sup>0.06</sup></td>
<td>1.59<sup>0.09</sup></td>
<td>1.64M (0.06)</td>
</tr>
<tr>
<td>Conn.D</td>
<td>2.16M (0.21)</td>
<td>4.42P<sup>0.45</sup></td>
<td>2.79M (0.26)</td>
</tr>
<tr>
<td>SMI</td>
<td>-2.62M (0.65)</td>
<td>0.10P<sup>0.15</sup></td>
<td>-3.13M (0.39)</td>
</tr>
</tbody>
</table>

Distal shaft (20–30% locations)

<table>
<thead>
<tr>
<th></th>
<th>Dorsal</th>
<th>Middle</th>
<th>Plantar</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td>5.18 (0.30)</td>
<td>5.44P<sup>0.61</sup></td>
<td>4.22M (0.44)</td>
</tr>
<tr>
<td>BV/TV</td>
<td>0.54M (0.01)</td>
<td>0.42P<sup>0.01</sup></td>
<td>0.52M (0.01)</td>
</tr>
<tr>
<td>BS/BV</td>
<td>7.22P<sup>0.37</sup></td>
<td>11.09P<sup>0.22</sup></td>
<td>7.80P<sup>0.30</sup></td>
</tr>
<tr>
<td>Tb.Th</td>
<td>0.31P<sup>0.02</sup></td>
<td>0.21P<sup>0.01</sup></td>
<td>0.31P<sup>0.02</sup></td>
</tr>
<tr>
<td>Tb.Sp</td>
<td>0.31M (0.02)</td>
<td>0.31M (0.02)</td>
<td>0.31M (0.02)</td>
</tr>
<tr>
<td>Tb.N</td>
<td>2.04P<sup>0.06</sup></td>
<td>2.33M<sup>0.06</sup></td>
<td>2.02P<sup>0.06</sup></td>
</tr>
<tr>
<td>Conn.D</td>
<td>6.21M P<sup>0.51</sup></td>
<td>11.43P<sup>0.55</sup></td>
<td>7.63P<sup>0.61</sup></td>
</tr>
<tr>
<td>SMI</td>
<td>-1.53M (0.29)</td>
<td>-0.12P<sup>0.21</sup></td>
<td>-1.10P<sup>0.25</sup></td>
</tr>
</tbody>
</table>

The distal shaft of deer calcanei only showed one statistically significant dorsal/plantar difference (plantar > dorsal, Conn.D), but this significant difference inverted (dorsal > plantar) when the subset of VOIs of similar size was considered. These results do not provide strong support for the mid-shaft versus distal shaft comparison of Prediction 2 (i.e., more differences in the mid-shaft). The data in sheep calcanei also generally reject Prediction 2 by showing more dorsal versus plantar differences in the distal shaft than in the mid-shaft (six of eight characteristics versus four of eight characterstics, respectively).

Prediction 3: the mid-shaft will show dorsal/middle/plantar architectural differences

In both species (when all data are considered), five of eight characteristics showed the ‘patterns’ of the expected differences in Prediction 3 (Table 2). The exceptions included dorsal/middle/plantar patterns in DA, Tb.N, and Conn.D. (‘Patterns’ refers to instances when the middle region differs from the dorsal and plantar regions, regardless of whether or not the dorsal and plantar regions are significantly different.) The data therefore show that in the mid-shaft the middle region generally differs from the other two regions even though only one characteristic in each species showed a dorsal/plantar difference that satisfied Prediction 1.

Prediction 4: the distal shaft will show fewer dorsal/middle/plantar differences than mid-shaft

In the deer calcanei (when all data are considered), five of eight characteristics (BV/TV, BS/BV, Tb.Th, Conn.D, and SMI) showed similar patterns in differences of trabecular architectural characterstics between the dorsal/middle/plantar regions in both the mid-shaft and distal shaft, which is not consistent with Prediction 4. These results contrast with data in the sheep calcanei where only one of eight characterstics (BV/TV) showed the predicted dorsal/middle/plantar differences in the distal shaft when compared to five of eight found in the mid-shaft. The latter finding is consistent with Prediction 4.

Discussion

The architectural characterstics that have often been shown to be most important in conveying trabecular bone strength and stiffness (BV/TV, DA and SMI) did not significantly differ between the dorsal and

Means and standard errors (SEM) are shown. The superscripted letters indicate statistical significance (p<0.05) between the dorsal (D), middle (M) and plantar (P) VOIs. Bolded text = dorsal and plantar locations are statistically different (p<0.05).
Table 4

Results of Pearson correlation analyses in (a) 13 deer calcanei, and (b) 13 sheep calcanei.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All Trabecular Locations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV/TV</td>
<td>-0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS/BV</td>
<td>0.37</td>
<td>-0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb.Th</td>
<td>-0.40</td>
<td>0.80</td>
<td>-0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb.Sp</td>
<td>0.55</td>
<td>-0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb.N</td>
<td>-0.43</td>
<td>0.72</td>
<td>-0.65</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conn.D</td>
<td>0.52</td>
<td>-0.92</td>
<td>0.81</td>
<td>-0.69</td>
<td>0.44</td>
<td>0.65</td>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td>SMI</td>
<td>-0.94</td>
<td>0.73</td>
<td>-0.54</td>
<td>0.48</td>
<td>0.48</td>
<td>0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorsal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV/TV</td>
<td>-0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS/BV</td>
<td>0.52</td>
<td>-0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb.Th</td>
<td>0.57</td>
<td>-0.84</td>
<td>0.71</td>
<td>-0.57</td>
<td>-0.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb.Sp</td>
<td>0.57</td>
<td>0.71</td>
<td>0.57</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb.N</td>
<td>0.57</td>
<td>0.71</td>
<td>0.57</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conn.D</td>
<td>-0.58</td>
<td>0.70</td>
<td>0.48</td>
<td>-0.78</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMI</td>
<td>-0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV/TV</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS/BV</td>
<td>0.52</td>
<td>-0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb.Th</td>
<td>0.57</td>
<td>-0.84</td>
<td>-0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb.Sp</td>
<td>0.57</td>
<td>-0.84</td>
<td>-0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb.N</td>
<td>0.57</td>
<td>-0.84</td>
<td>-0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conn.D</td>
<td>0.58</td>
<td>0.48</td>
<td>0.58</td>
<td>0.55</td>
<td>0.56</td>
<td>0.52</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>SMI</td>
<td>0.74</td>
<td>0.75</td>
<td>0.58</td>
<td>0.55</td>
<td>0.56</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
</tr>
</tbody>
</table>

These correlations were determined using data from the mid-shaft (40–50% locations).

† = statistical ‘trends’ with $p > 0.05$ and < 0.10. Correlation coefficients without superscript ‘t’ are $p < 0.05$.

plantar tracts in either species. This suggests that trabecular architectural characteristics, when considered in isolation, do not relate in obvious or expected ways with the non-uniform strain mode/magnitude distribution. Hence, none of the hypotheses are supported, meaning that simplistic interpretations of trabecular morphology are unsupported. As discussed below, the differences between species could be due to: (1) body size, (2) activity levels, (3) sex ratio of the samples, or (4) sizes of the VOI analyzed.

Comparisons with data in the femoral neck of humans and other anthropoids

Milovanovic et al. (2012) examined the entire inferior and superior portions of the trabecular bone of the femoral mid-neck of elderly female cadavers ($n = 14$; $74.1 ± 9.3$ years) and showed that the inferior ‘compression’ region has greater BV/TV, Tb.Th, and DA ($p < 0.001$), and less rod-like trabeculae ($p = 0.047$), however, SMI values still exceed 2.0 in both superior and inferior regions. Although these results support the common idea that regionally increased stresses result in preferential adaptation of the inferior ‘compression’ region (Carter et al., 1989; Lotz et al., 1995), our findings do not resemble these data, possibly because of the effect of age-related bone loss. By contrast, the youngest age group (20–39 years) in the human femoral neck study of Djuric et al. (2010) showed Tb.Th ($p = 0.05$) to be the only characteristic that is significantly different between the tracts (greater in ‘compression region’). By contrast, this characteristic and all of the others measured (BV/TV, Tb.Sp, Tb.N, DA, SMI, and Conn.D) are significantly different between the tension and compression regions in the 40–59 year-old group. It is likely that the post-maturation emergence of these differences reflects generally reduced loading with age and not some other volitional change in habitual load history. Consequently, the young/healthy femoral necks show only one difference (Tb.Th) between the compression and tension regions attributable to the non-uniform stress distribution and not to an aging effect. The deer calcanei also showed only one difference (Tb.N) that is likely mechanically important (Mitra et al., 2005), however, this occurred in the ‘tension tract’.

In a detailed micro-CT study, Fajardo et al. (2007) investigated trabecular architectural characteristics in the proximal femora from several extant and relatively young adult, non-human anthropoid species. Their study was also based on the presumption that bending occurs habitually in all of the bone regions studied. They also failed to find consistent differences in trabecular architectural characteristics (BV/TV, DA, SMI, Tb.N, Tb.Sp, Tb.Th, and Conn.D) between the anterior and posterior aspects of the trabecular bone in the femoral necks.

1. This statistical analysis, which is not reported in the original paper by Milovanovic et al. (2012), was provided by M. Djuric and P. Milovanovic by written communication in February 2012.
2. This statistical analysis, which is not reported in the original paper by Djuric et al. (2010), was provided by M. Djuric and P. Milovanovic by written communication in February 2012.

Author’s personal copy
In summary, even in view of non-age-related differences in trabecular architectural characteristics that have been reported in mature anthropoid proximal femora these studies fail to find consistent correlations between trabecular architectural characteristics and the presumed non-uniform load environment. Similar confusing/inconsistent results have been reported in other studies of human and non-human proximal femora that are also often couched in terms of the traditional context of Wolff’s law, where high stresses in the ‘compression region’ are expected to correlate with trabecular bone with clearly enhanced mechanical properties: more dense (reduced porosity), highly oriented, and extensively interconnected (Rafferty, 1998; MacLatchy and Muller, 2002; Viola, 2002; Ryan and Walker, 2010; Shaw and Ryan, 2012). In these perspectives, the influences of developmental constraints on trabecular architectural variations within and between bones should be considered (Swartz et al., 1998; Byers et al., 2000; Nafei et al., 2002; Ryan and Walker, 2010; Shaw and Ryan, 2012). In these perspectives, the influences of developmental constraints on trabecular architectural variations within and between bones should be considered (Swartz et al., 1998; Byers et al., 2000; Nafei et al., 2002; Ryan and Walker, 2010; Shaw and Ryan, 2012).

Additional limitations and confounding issues when comparing artiodactyls and primates

Experimental studies have shown that the mechanical properties of trabecular bone are generally similar in humans and bovines (Carter and Hayes, 1977; Lotz and Hayes, 1990; Keaveny et al., 1994b). When differences occur, they are often a function of relatively greater BV/TV in these non-human species, as has been reported in ovines and cervines (present study; Mittra et al., 2005) and bovines (Carter and Hayes, 1977; Rice et al., 1988; Keaveny et al., 1994b). Variations in BV/TV can also be associated with differences in other mechanically important architectural characteristics (e.g., SMI and Tb.N). Nevertheless, relatively high absolute values of BV/TV and SMI that we found in the trabecular tracts of sheep and deer calcanei resemble those reported in younger humans and in older humans in some locations (e.g., in the femoral neck where the tracts merge beneath the femoral head) (Lotz and Hayes, 1990; Hildebrand et al., 1999). Inter-species comparisons of trabecular architecture and mechanical properties can be drawn between artiodactyls and anthropoids as long as the effects that BV/TV variation might have on other architectural characteristics are considered.

Scaling relationships between animal size and trabecular architecture are also important considerations when comparing artiodactyls with primates, especially in view of the broad range of sizes of the primates that have been used in studies of trabecular bone architecture (Rafferty, 1998; MacLatchy and Muller, 2002; Viola, 2002; Lai et al., 2005; Fajardo et al., 2007; Djuric et al., 2010; Ryan and Walker, 2010; Milovanovic et al., 2012; Shaw and Ryan, 2012). For example, when compared with the estimated masses of our animals (male mule deer, 60–74 kg; female sheep, 56–66 kg), the masses of primates studied by Fajardo et al. (2007) are much less.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Correlations of architectural characteristics with cortical thickness (each trabecular tract compared to its adjacent cortex) in (A) 13 deer calcanei, and (B) 13 sheep calcanei.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Deer Calcanei</td>
<td>Mid-shaft</td>
</tr>
<tr>
<td>Ct.Th</td>
<td>0.41</td>
</tr>
<tr>
<td>Distal Shaft</td>
<td>Ct.Th</td>
</tr>
<tr>
<td>B. Sheep Calcanei</td>
<td>Mid-shaft</td>
</tr>
<tr>
<td>Distal Shaft</td>
<td>Ct.Th</td>
</tr>
</tbody>
</table>

[Dorsal and plantar regions only; Coefficients shown are \(p < 0.05 \). Ct.Th = cortical thickness; see Methods section for other abbreviations.

Figure 5. Structure model index (SMI) measurements for the (A) deer calcanei (n = 13), and (B) sheep calcanei (n = 13) showing negative values (honeycomb morphology) in most regions. Exceptions include the more plate-like morphology in the mid-aspects of the mid-shafts of sheep and deer calcanei, and in the distal-middle aspect of deer calcanei. The letters below or above the bars indicate statistical significance (\(p < 0.05 \)) between the dorsal (D), middle (M) and plantar (P) VOIs within the mid-shaft (left side) or distal shaft (right side).

(36 (Macaca fascicularis; female)—11.9 kg (Symphalangus syndactylus; male)). By contrast, our animals are more similar to the mass ranges of typical adult chimpanzees (33–60 kg) and humans (36–78 kg) (Smith and Jungers, 1997). While Doube et al. (2011) have shown that trabecular BV/TV does not scale substantially with animal size in femora from a broad size range of various species (72 terrestrial mammals, 18 avians, and 1 crocodilian), their data revealed that trabeculae in larger animals’ femora are thicker (Tb.Th), further apart (Tb.Sp) and fewer per unit number (Tb.N). This issue exposes an important consideration when drawing comparisons between our data and smaller primates, especially because Tb.N is the parameter that is most likely to be biomechanically significant in the dorsal/plantar comparisons in the deer calcanei (Mittra et al., 2005; Stauber et al., 2006; Badiei et al., 2007; Saparin et al., 2011). Another limitation of the present study is that all of the deer are male and the sheep are female. Sexual dimorphism might also help to explain why there are differences in trabecular bone between these species (Wang et al., 2010).

Ensuring that VOIs scaled to body size are used is also important for avoiding over-sampling in smaller- versus larger-bodied taxa, and in comparisons of regions that are not functionally homologous (Lazenby et al., 2011). Our smallest VOI is 3.5 times smaller than the...
biggest VOI (105 mm3 versus 340 mm3). Thus, it was important to
determine if the data could be biased by VOI size. Prior studies have
shown that of the eight characteristics that we examined, SMI and
Conn.D are the two that would most likely be influenced by VOI size
(Kivell et al., 2011; Lazenby et al., 2011). This might explain the
observation that the smallest VOIs (deer mid-shaft) also tend to
have the lowest Conn.D (Table 3A). However, besides Conn.D data
becoming statistically significant and consistent with predictions in the
mid-shaft deer calcanei (superscripts in Table 2), there were no
substantial changes in the conclusions that are based on compar-
isons made using Conn.D and SMI data from VOIs with similar sizes.
Inter-species comparisons could also be confounded by the
relatively greater amount of cortical mass (as a percentage of the
entire cross-section) that the artiodactyl calcaneal shaft has when
compared with some anthropoid proximal femora, especially
modern humans (Ohman et al., 1997; Rafferty, 1998; Ruff et al.,
1999; Lovejoy et al., 2002; Mayhew et al., 2005). Support for this
possibility includes finite element analyses of a young adult human
distal radius and experimental studies of adult human femoral
necks (ages: 59–83 years) show that reductions in trabecular bone
mass have a much lesser effect on the overall bone strength than
reductions in cortical mass (Pistoia et al., 2003; Holzer et al., 2009).
Inter-species differences in limb morphology also likely have
important roles in the differences in the load sharing that occurs for
primate proximal femora when compared with artiodactyl calcanei.
For example, toward the distal ends of artiodactyl limb bones,
including the calcanei, the potential for the modification of strains
by local contractions of adjacent muscles is lacking when compared
with primate limbs. These considerations are relevant for the pre-
sent study because it is likely that there is disproportionately
larger load sharing between the robust cortex and trabecular bone
in artiodactyl calcanei than generally in proximal primate femora
because of the potential for significant local muscle influences in
the hip region. However, this distinction seems less important
when considered in terms of two main findings of this study.
First, in deer calcanei the correlation analyses between the local
cortical thickness and each of the trabecular architectural charac-
teristics in the adjacent tract showed that only one characteristic
 correlated at each of the shaft locations (Table 5A). Also, while there
are several significant correlations in the sheep calcanei these are
inconsistent when compared with the deer calcanei (Table 5B).
Second, the less robust cortex at the distal-most location of the
calcaneal shaft that we measured more closely resembles the neck
locations of chimpanzee and human proximal femora. For example,
the cortical robusticity of the 20% and 30% locations of the sheep and
deer calcanei are between the base- and mid-neck sections of the
adult chimpanzee and human femora used in our prior study
(Skedros and Baicom, 2007) (Figure 7). These data and observations
suggest that the cortices of the artiodactyl calcanei do not have an
important role in influencing their trabecular architecture as might
have been anticipated. Additional analyses that consider cortical
bone distribution across and along the entire shaft (e.g., second
moments of area) are needed to rigorously examine these issues.
A more important factor in the inter-species differences in these
correlations of cortical thickness with trabecular architecture might
be the extent of the animal’s general physical activity, which might
explain the mixed findings in the calcanei of the relatively less active
sheep (Table 5B versus A). There are data suggesting that wild deer are
more physically active than domesticated sheep. For example, calca-
nei of mule deer have substantially higher concentrations of in vivo
microdamage and dramatic histomorphological differences between
their dorsal/plantar cortices (Skedros et al., 2011b). Increased activity
might also explain why the deer calcanei have a dorsal/plantar dif-
ference (Tb.N) that is likely mechanically important.
Future studies of the artiodactyl calcaneus model as a ‘control’ for
anthropoid bone adaptation

Anthropologists might wonder what would be the purpose of
pursuing future studies of the artiodactyl calcaneus model for
studies of anthropoid bones if there are so many factors that differ
between these taxa. A series of studies has shown that the answer
to this is clear when histomorphological characteristics of cortical
bone are used to study adaptation for bending (Skedros et al., 2004,
2007, 2009, 2011a, 2012a, 2013). These studies have shown highly
consistent patterns of histomorphological adaptation for bending in
cortices of limb bones of horses, artiodactyls, chimpanzees, and
modern humans. However, the role of this model is less clear for
understanding trabecular bone adaptation in the anthropoid limb
skeleton. We believe that the potential for this model will even-
tually be clear in positive ways that were not identified in this
study. For example, there could be material characteristics of tra-
becular bone (e.g., lamellations, ‘packets’, and micromineralization
patterns in individual struts) that more strongly correlate with a
habitual bending history than architectural characteristics
(Ciarelli et al., 2009; Skedros et al., 2012b). Synergism of material
and architectural characteristics that are aimed at enhancing tra-
becular bone mechanical properties for local load environments is

![Figure 6. Scatter plots and least-squares regression lines for SMI versus BV/TV com-
parisons in mid-shaft locations of (A) 13 deer calcanei, and (B) 13 sheep calcanei. The
data for the middle regions are relatively confined toward the upper left portions of the
plots. The regression lines for the plantar tracts are not shown so that the differences
between middle regions and dorsal tracts can be seen more clearly. The dorsal and
plantar tracts have similar negatively sloping regression lines.](image-url)
an intriguing possibility that warrants study (Wang et al., 2012). We predict that trabecular material and architectural data can be considered in creative ways that will prove to be strong correlates of load history. This might mean considering measures of trabecular and cortical bone structure and histomorphology. Some trabecular architectural characteristics could also be considered in more detail. For example, SMI data revealed plate-like trabeculae in the middle regions of both species. Because the middle trabecular region is in the vicinity of the neutral axis, it likely experiences relatively greater shear stress than other regions (Young, 1989). Plate-like trabeculae might accommodate these locally prevalent/increased shear stresses (Giesen and van Eijden, 2000). We could not locate any micro-CT studies that specifically evaluated trabecular morphologies in ‘neutral axis regions’ of anthropoid bones in order to determine if plate-like trabeculae are prevalent there. In these perspectives, the potential for artiodactyl calcanei as ‘controls’ holds promise for studies of trabecular bone in anthropoid bones.

This study helps to chart the course for future investigations that are essential for further developing sheep and deer calcanei as models for studying bone adaptation. These include: (1) in vivo studies of the strain environments in the cortical and trabecular envelopes, and finite element analyses based on these strain data, (2) mechanical testing studies coupled with multiple-variable regression analyses that consider the influence of histomorphological, compositional, and architectural characteristics of the tested specimens, and (3) incorporating in these analyses the mechanical influences of cross-sectional moments of area and asymmetrical cortical mass distributions and histomorphology along the calcaneal shaft in addition to the load-sharing functions of the nearby plantar ligament and flexor tendon. Ontogenetic and aging studies will also help to determine the relative importance of functional loading and developmental constraints in the emergence and maintenance of the trabecular morphology of the calcaneal shaft. The wild deer calcaneus model is less useful for these studies because their natural lifespan is likely insufficient to expose these effects, but studies of

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{A. Medial-to-lateral views of drawings of adult sheep and deer calcanei, and anterior-to-posterior views of drawings of adult proximal chimpanzee and modern human femora. In the sheep and deer calcanei the section locations that are shown were defined using the same methods in the present study (70% = proximal shaft; 50% = mid-shaft, and 30–20% = distal shaft). These are representative sections from bones that were used in prior studies (40% locations were not obtained) where some of the calcanei were from the contralateral bone from the paired calcanei used in the present study: deer calcanei (n = 15), sheep calcanei (n = 15), chimpanzee femora (n = 8), and modern human femora (n = 15) (Skedros et al., 2001, 2004, 2012b; Skedros and Baucom, 2007). In the femora the abbreviations are: ST = subtrochanteric, IT = intertrochanteric, BN = base neck, MN = mid-neck. With the exception of the ST and 70% locations, the medullary cavities are completely filled with trabecular bone. The scale bar refers to the cross-sections. B. Cortical robusticity data (means and standard deviations) expressed as the percentage of cortical area (CA) with respect to the total area (TA) of the cross-section ((CA/TA) 100).}
\end{figure}
post-menopausal osteoporosis and aging are possible in sheep (Turner, 2002; Zarrinkalam et al., 2009).

Conclusion

Among the eight trabecular architectural characteristics examined, Tb.N (and Conn.D in the subset analysis) showed the most obvious and potentially mechanically relevant regional differences between the dorsal and plantar tracts. This dorsal-plantar Tb.N difference was found in the deer calcaneus (plantar > dorsal) but was opposite, and statistically significant, in the sheep calcaneus (dorsal > plantar). However, sheep calcanei did not show significant differences in Conn.D in the subset analysis. Regional differences in Tb.N, Conn.D and other trabecular architectural characteristics also have not been consistently found in previous studies of various anthropoid proximal femora where bending is considered the habitual load history. This is the case regardless of whether specific trabecular architectural variations are considered to enhance mechanical properties for high versus low stress, or for compression versus tension environments. In both species, significant properties for high versus low stress, or for compression versus tension environments. In both species, significant differences in cortical porosity in the fractured femoral neck. Bone 24, 57–64. Biewener, AA, Fazlali, N.L., Konieczynski, D.D., Baadovinnette, R.V., 1996. Adaptive changes in trabecular architecture in relation to functional strain patterns and disease progression in the sheep. Bone 19, 45–51.

Acknowledgments

The authors thank Roberto Fajardo and Tim Ryan for their discussions and for helping to ensure that the micro-CT methods used in this study are consistent with their prior studies, and Kendra Keenan, Kenneth Hunt, and anonymous reviewers for criticisms of the manuscript. Gregory Stoddard provided advice for the statistical analyses and Derinna Kopp facilitated the CT scanning of the bones. This research is supported by research funds from the Office of Research, and Development and Rehabilitation Service of the Department of Veterans Affairs, USA and by a grant from the Orthopaedic Research and Education Foundation (OREF 01-024).

References

